NAME
pkcs12 — PKCS#12 file utility
Synopsis
openssl pkcs12 [-export] [-chain] [-inkey filename] [-certfile filename] [-name name] [-caname name] [-in filename] [-out filename] [-noout] [-nomacver] [-nocerts] [-clcerts] [-cacerts] [-nokeys] [-info] [-des] [-des3] [-idea] [-nodes] [-noiter] [-maciter] [-twopass] [-descert] [-certpbe] [-keypbe] [-keyex] [-keysig] [-password arg] [-passin arg] [-passout arg] [-rand file(s)]
DESCRIPTION
The pkcs12 command allows PKCS#12 files (sometimes referred
to as PFX files) to be created and parsed. PKCS#12 files are used
by several programs including Netscape, MSIE and MS Outlook.
COMMAND OPTIONS
There are a lot of options the meaning of some depends of
whether a PKCS#12 file is being created or parsed. By default a
PKCS#12 file is parsed a PKCS#12 file can be created by using the
-export option (see below).
PARSING OPTIONS
-in filename
This specifies filename of the PKCS#12 file to be parsed.
Standard input is used by default.
-out filename
The filename to write certificates and private keys to, standard
output by default. They are all written in PEM format.
-pass arg, -passin arg
the PKCS#12 file (i.e. input file) password source. For more
information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).
-passout arg
pass phrase source to encrypt any outputed private keys with.
For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl(1).
-noout
this option inhibits output of the keys and certificates to
the output file version of the PKCS#12 file.
-clcerts
only output client certificates (not CA certificates).
-cacerts
only output CA certificates (not client certificates).
-nocerts
no certificates at all will be output.
-nokeys
no private keys will be output.
-info
output additional information about the PKCS#12 file structure,
algorithms used and iteration counts.
-des
use DES to encrypt private keys before outputting.
-des3
use triple DES to encrypt private keys before outputting,
this is the default.
-idea
use IDEA to encrypt private keys before outputting.
-nodes
don't encrypt the private keys at all.
-nomacver
don't attempt to verify the integrity MAC before reading the
file.
-twopass
prompt for separate integrity and encryption passwords: most
software always assumes these are the same so this option will render
such PKCS#12 files unreadable.
FILE CREATION OPTIONS
-export
This option specifies that a PKCS#12 file will be created
rather than parsed.
-out filename
This specifies filename to write the PKCS#12 file to. Standard
output is used by default.
-in filename
The filename to read certificates and private keys from, standard
input by default. They must all be in PEM format. The order doesn't
matter but one private key and its corresponding certificate should
be present. If additional certificates are present they will also
be included in the PKCS#12 file.
-inkey filename
file to read private key from. If not present then a private
key must be present in the input file.
-name friendlyname
This specifies the "friendly name" for the certificate and
private key. This name is typically displayed in list boxes by software
importing the file.
-certfile filename
A filename to read additional certificates from.
-caname friendlyname
This specifies the "friendly name" for other certificates.
This option may be used multiple times to specify names for all
certificates in the order they appear. Netscape ignores friendly
names on other certificates whereas MSIE displays them.
-pass arg, -passout arg
the PKCS#12 file (i.e. output file) password source. For more
information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).
-passin password
pass phrase source to decrypt any input private keys with.
For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl(1).
-chain
if this option is present then an attempt is made to include
the entire certificate chain of the user certificate. The standard
CA store is used for this search. If the search fails it is considered
a fatal error.
-descert
encrypt the certificate using triple DES, this may render
the PKCS#12 file unreadable by some "export grade" software. By
default the private key is encrypted using triple DES and the certificate
using 40 bit RC2.
-keypbe alg, -certpbe alg
these options allow the algorithm used to encrypt the private
key and certificates to be selected. Although any PKCS#5 v1.5 or
PKCS#12 algorithms can be selected it is advisable only to use PKCS#12
algorithms. See the list in the NOTES section for more information.
-keyex|-keysig
specifies that the private key is to be used for key exchange
or just signing. This option is only interpreted by MSIE and similar
MS software. Normally "export grade" software will only allow 512
bit RSA keys to be used for encryption purposes but arbitrary length
keys for signing. The -keysig option marks the key for signing only.
Signing only keys can be used for S/MIME signing, authenticode (ActiveX
control signing) and SSL client authentication, however due to a
bug only MSIE 5.0 and later support the use of signing only keys
for SSL client authentication.
-nomaciter, -noiter
these options affect the iteration counts on the MAC and key
algorithms. Unless you wish to produce files compatible with MSIE
4.0 you should leave these options alone.
To discourage attacks by using large dictionaries of common
passwords the algorithm that derives keys from passwords can have
an iteration count applied to it: this causes a certain part of
the algorithm to be repeated and slows it down. The MAC is used
to check the file integrity but since it will normally have the same
password as the keys and certificates it could also be attacked.
By default both MAC and encryption iteration counts are set to 2048,
using these options the MAC and encryption iteration counts can
be set to 1, since this reduces the file security you should not
use these options unless you really have to. Most software supports
both MAC and key iteration counts. MSIE 4.0 doesn't support MAC
iteration counts so it needs the -nomaciter option.
-maciter
This option is included for compatibility with previous versions,
it used to be needed to use MAC iterations counts but they are now
used by default.
-rand file(s)
a file or files containing random data used to seed the random
number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character.
The separator is ; for MS-Windows, , for OpenVMS, and : for all
others.
NOTES
Although there are a large number of options most of them
are very rarely used. For PKCS#12 file parsing only -in and -out
need to be used for PKCS#12 file creation -export and -name are
also used.
If none of the -clcerts, -cacerts or -nocerts options are
present then all certificates will be output in the order they appear
in the input PKCS#12 files. There is no guarantee that the first
certificate present is the one corresponding to the private key.
Certain software which requires a private key and certificate and
assumes the first certificate in the file is the one corresponding
to the private key: this may not always be the case. Using the -clcerts
option will solve this problem by only outputting the certificate
corresponding to the private key. If the CA certificates are required
then they can be output to a separate file using the -nokeys -cacerts options
to just output CA certificates.
The -keypbe and -certpbe algorithms allow the precise encryption
algorithms for private keys and certificates to be specified. Normally
the defaults are fine but occasionally software can't handle triple
DES encrypted private keys, then the option -keypbe PBE-SHA1-RC2-40
can be used to reduce the private key encryption to 40 bit RC2.
A complete description of all algorithms is contained in the pkcs8
manual page.
EXAMPLES
Parse a PKCS#12 file and output it to a file:
openssl pkcs12 -in file.p12 -out file.pem
|
Output only client certificates to a file:
openssl pkcs12 -in file.p12 -clcerts -out file.pem
|
Don't encrypt the private key: openssl pkcs12 -in file.p12
-out file.pem -nodes
Print some info about a PKCS#12 file:
openssl pkcs12 -in file.p12 -info -noout
|
Create a PKCS#12 file:
openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate"
|
Include some extra certificates:
openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate" \ -certfile othercerts.pem
|
Restrictions
Some would argue that the PKCS#12 standard is one big bug
:-)
Versions of OpenSSL before 0.9.6a had a bug in the PKCS#12
key generation routines. Under rare circumstances this could produce
a PKCS#12 file encrypted with an invalid key. As a result some PKCS#12 files
which triggered this bug from other implementations (MSIE or Netscape)
could not be decrypted by OpenSSL and similarly OpenSSL could produce
PKCS#12 files which could not be decrypted by other implementations.
The chances of producing such a file are relatively small: less
than 1 in 256.
A side effect of fixing this bug is that any old invalidly
encrypted PKCS#12 files cannot no longer be parsed by the fixed
version. Under such circumstances the pkcs12 utility will report
that the MAC is OK but fail with a decryption error when extracting
private keys.
This problem can be resolved by extracting the private keys
and certificates from the PKCS#12 file using an older version of
OpenSSL and recreating the PKCS#12 file from the keys and certificates
using a newer version of OpenSSL. For example:
old-openssl -in bad.p12 -out keycerts.pem openssl -in keycerts.pem -export -name "My PKCS#12 file" -out fixed.p12
|