email: dst@cs.cmu.edu
Version 2.2, dated July 10, 2000
In this paper I describe, in plain English, the algorithm for decrypting DVDs that have been encrypted using CSS, the Content Scrambling System. For clarity, when describing a step of a computation, I also give the equivalent C code in a blue inset. The C source code for this algorithm was posted anonymously to the LiViD mailing list. I have relied upon this posting, and the css-auth source code written by Derek Fawcus, in creating my description. Further insight into the operation of the algorithm can be obtained by reading Frank Stevenson's essay, "Cryptanalysis of Contents Scrambling System", available on the web.
In this paper, arrays are indexed from zero. Integers are assumed to be four bytes in length. Bytes are assumed to be automatically coerced to integers as necessary. Hexadecimal constants are represented using C notation, 0x##, or 0x###, where ## or ### are hexadecimal numerals from 0 to F.
The tables referenced in the procedures below are given at the end of the paper.
Decrypting a DVD movie is done in several steps, as shown in the figure above. First one must have a master key, which is unique to the DVD player manufacturer. It is also known as a player key. The player reads an encrypted disk key from the DVD, and uses its player key to decrypt the disk key. Then the player reads the encrypted title key for the file to be played. (The DVD will likely contain multiple files, typically 4 to 8, each with its own title key.) It uses the decrypted disk key (DK) to decrypt the title key. Finally, the decrypted title key, TK, is used to descramble the actual content.
The procedure returns no value. (It is of type "void".)
The procedure takes two arguments.
The first argument is named KEY, and is a pointer to a vector of six unsigned bytes. These bytes initially contain an encrypted disk key. They will eventually hold the decrypted disk key computed by the procedure.
The second argument is named im, and is a pointer to a vector of six unsigned bytes. These bytes are the decryption key (the player key) that the procedure will use to decrypt the bytes in the variable named KEY.
void CSStitlekey1(unsigned char *key,unsigned char *im) {
The procedure makes use of several temporary (local) variables.
Temporary variables t1 through t6 are unsigned integers.
unsigned int t1,t2,t3,t4,t5,t6;
Temporary variable k is a vector of five unsigned bytes.
unsigned char k[5];
Temporary variable i is an integer, used as a loop index.
int i;
The body of procedure CSStitlekey1 is as follows:
t1=im[0]|0x100;
t2=im[1];
t3=*((unsigned int *)(im+2));
t4=t3&7;
t3=t3*2+8-t4;
t5=0;
for(i=0;i<5;i++) {
t4=CSStab2[t2]^CSStab3[t1];
t2=t1>>1;
t1=((t1&1)<<8)^t4;
t4=CSStab4[t4];
t6=(((((((t3>>3)^t3)>>1)^t3)>>8)^t3)>>5)&0xff;
t3=(t3<<8)|t6;
t6=CSStab4[t6];
t5+=t6+t4;
k[i]=t5&0xff;
t5>>=8;
}
for(i=9;i>=0;i--) {
key[CSStab0[i+1]]=k[CSStab0[i+1]]^CSStab1[key[CSStab0[i+1]]]^key[CSStab0[i]];
}
The argunents to this procedure, KEY and im, are the title key and the decrypted disk key, respectively.
Procedure CSStitlekey2 is identical to CSStitlekey1, except that in step 15, it uses the table CSStab5 instead of CSStab4. Note that CSStab5 is the bitwise complement of CSStab4.
The procedure returns no value. (It is of type "void".)
The procedure takes two arguments.
The first argument is named TKEY, and is a pointer to a vector of six unsigned bytes. These bytes initially contain an encrypted title key. They will eventually hold the decrypted title key computed by the procedure.
The second argument is named DKEY, and is a pointer to a vector of six unsigned bytes. These bytes contain the encrypted disk key.
The procedure makes use of several temporary (local) variables.
Temporary variable i is an integer, used as a loop index.
Temporary variable im1 is a vector of six unsigned bytes.
Temporary variable im2 is a vector of six unsigned bytes holding the player key. It is initialized to the hexadecimal constants 0x51, 0x67, 0x67, 0xc5, 0xe0, and 0x00.
The body of procedure CSSdecrypttitlekey is as follows:
The procedure returns no value. (It is of type "void".)
The procedure takes two arguments.
The first argument is named SEC, and is a pointer to a vector of 2048 unsigned bytes. These bytes initially contain the encrypted disk sector. They will eventually hold the decrypted sector computed by the procedure.
The second argument is named KEY, and is a pointer to a vector of six unsigned bytes. These bytes contain the decrypted title key that will be used to decrypt the disk sector.
void CSSdescramble(unsigned char *sec,unsigned char *key) {
The procedure makes use of several temporary (local) variables.
Temporary variables t1 through t6 are unsigned integers.
unsigned int t1,t2,t3,t4,t5,t6;
Temporary variable END is a pointer to the end of the 2048 byte vector to be decrypted. It is initialized to SEC plus 0x800.
unsigned char *end=sec+0x800;
The body of procedure CSSdescramble is as follows:
t1=key[0]^sec[0x54]|0x100;
t2=key[1]^sec[0x55];
t3=(*((unsigned int *)(key+2)))^(*((unsigned int *)(sec+0x56)));
t4=t3&7; t3=t3*2+8-t4; sec+=0x80; t5=0;
while(sec!=end) {
t4=CSStab2[t2]^CSStab3[t1]; t2=t1>>1; t1=((t1&1)<<8)^t4; t4=CSStab5[t4]; t6=(((((((t3>>3)^t3)>>1)^t3)>>8)^t3)>>5)&0xff; t3=(t3<<8)|t6; t6=CSStab4[t6]; t5+=t6+t4; *sec++=CSStab1[*sec]^(t5&0xff); t5>>=8; }
Table CSStab1 is 256 bytes in length. It implements a simple substitution cipher. Its elements, expressed as hexadecimal constants, are:
0x33,0x73,0x3b,0x26,0x63,0x23,0x6b,0x76,0x3e,0x7e,0x36,0x2b,0x6e,0x2e,0x66,0x7b, 0xd3,0x93,0xdb,0x06,0x43,0x03,0x4b,0x96,0xde,0x9e,0xd6,0x0b,0x4e,0x0e,0x46,0x9b, 0x57,0x17,0x5f,0x82,0xc7,0x87,0xcf,0x12,0x5a,0x1a,0x52,0x8f,0xca,0x8a,0xc2,0x1f, 0xd9,0x99,0xd1,0x00,0x49,0x09,0x41,0x90,0xd8,0x98,0xd0,0x01,0x48,0x08,0x40,0x91, 0x3d,0x7d,0x35,0x24,0x6d,0x2d,0x65,0x74,0x3c,0x7c,0x34,0x25,0x6c,0x2c,0x64,0x75, 0xdd,0x9d,0xd5,0x04,0x4d,0x0d,0x45,0x94,0xdc,0x9c,0xd4,0x05,0x4c,0x0c,0x44,0x95, 0x59,0x19,0x51,0x80,0xc9,0x89,0xc1,0x10,0x58,0x18,0x50,0x81,0xc8,0x88,0xc0,0x11, 0xd7,0x97,0xdf,0x02,0x47,0x07,0x4f,0x92,0xda,0x9a,0xd2,0x0f,0x4a,0x0a,0x42,0x9f, 0x53,0x13,0x5b,0x86,0xc3,0x83,0xcb,0x16,0x5e,0x1e,0x56,0x8b,0xce,0x8e,0xc6,0x1b, 0xb3,0xf3,0xbb,0xa6,0xe3,0xa3,0xeb,0xf6,0xbe,0xfe,0xb6,0xab,0xee,0xae,0xe6,0xfb, 0x37,0x77,0x3f,0x22,0x67,0x27,0x6f,0x72,0x3a,0x7a,0x32,0x2f,0x6a,0x2a,0x62,0x7f, 0xb9,0xf9,0xb1,0xa0,0xe9,0xa9,0xe1,0xf0,0xb8,0xf8,0xb0,0xa1,0xe8,0xa8,0xe0,0xf1, 0x5d,0x1d,0x55,0x84,0xcd,0x8d,0xc5,0x14,0x5c,0x1c,0x54,0x85,0xcc,0x8c,0xc4,0x15, 0xbd,0xfd,0xb5,0xa4,0xed,0xad,0xe5,0xf4,0xbc,0xfc,0xb4,0xa5,0xec,0xac,0xe4,0xf5, 0x39,0x79,0x31,0x20,0x69,0x29,0x61,0x70,0x38,0x78,0x30,0x21,0x68,0x28,0x60,0x71, 0xb7,0xf7,0xbf,0xa2,0xe7,0xa7,0xef,0xf2,0xba,0xfa,0xb2,0xaf,0xea,0xaa,0xe2,0xff
Table CSStab2 is 256 bytes in length. Its elements, expressed as hexadecimal constants, are:
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x09,0x08,0x0b,0x0a,0x0d,0x0c,0x0f,0x0e, 0x12,0x13,0x10,0x11,0x16,0x17,0x14,0x15,0x1b,0x1a,0x19,0x18,0x1f,0x1e,0x1d,0x1c, 0x24,0x25,0x26,0x27,0x20,0x21,0x22,0x23,0x2d,0x2c,0x2f,0x2e,0x29,0x28,0x2b,0x2a, 0x36,0x37,0x34,0x35,0x32,0x33,0x30,0x31,0x3f,0x3e,0x3d,0x3c,0x3b,0x3a,0x39,0x38, 0x49,0x48,0x4b,0x4a,0x4d,0x4c,0x4f,0x4e,0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47, 0x5b,0x5a,0x59,0x58,0x5f,0x5e,0x5d,0x5c,0x52,0x53,0x50,0x51,0x56,0x57,0x54,0x55, 0x6d,0x6c,0x6f,0x6e,0x69,0x68,0x6b,0x6a,0x64,0x65,0x66,0x67,0x60,0x61,0x62,0x63, 0x7f,0x7e,0x7d,0x7c,0x7b,0x7a,0x79,0x78,0x76,0x77,0x74,0x75,0x72,0x73,0x70,0x71, 0x92,0x93,0x90,0x91,0x96,0x97,0x94,0x95,0x9b,0x9a,0x99,0x98,0x9f,0x9e,0x9d,0x9c, 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x89,0x88,0x8b,0x8a,0x8d,0x8c,0x8f,0x8e, 0xb6,0xb7,0xb4,0xb5,0xb2,0xb3,0xb0,0xb1,0xbf,0xbe,0xbd,0xbc,0xbb,0xba,0xb9,0xb8, 0xa4,0xa5,0xa6,0xa7,0xa0,0xa1,0xa2,0xa3,0xad,0xac,0xaf,0xae,0xa9,0xa8,0xab,0xaa, 0xdb,0xda,0xd9,0xd8,0xdf,0xde,0xdd,0xdc,0xd2,0xd3,0xd0,0xd1,0xd6,0xd7,0xd4,0xd5, 0xc9,0xc8,0xcb,0xca,0xcd,0xcc,0xcf,0xce,0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7, 0xff,0xfe,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf6,0xf7,0xf4,0xf5,0xf2,0xf3,0xf0,0xf1, 0xed,0xec,0xef,0xee,0xe9,0xe8,0xeb,0xea,0xe4,0xe5,0xe6,0xe7,0xe0,0xe1,0xe2,0xe3
Table CSStab3 is 512 bytes in length. It consists of 64 repetitions of the following six-byte sequence: 0x00, 0x24, 0x49, 0x6d, 0x92, 0xb6, 0xdb, 0xff.
Table CSStab4 is 256 bytes in length. It is a lookup table for efficiently reversing the order of bits in a byte. If we regard it as a 16x16 matrix stored in row major order, then it can be described as the Cartesian product of two 16-element sequences.
Define seqI as [0x00, 0x08, 0x04, 0x0c, 0x02, 0x0a, 0x06, 0x0e, 0x01, 0x09, 0x05, 0x0d, 0x03, 0x0b, 0x07, 0x0f].
Define seqJ as [0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0].
With i and j each varying from 0 to 15, with j varying faster than i, the table entries can be described as table[i,j] = seqI[i] OR seqJ[j].
We can write out the table explicitly as:
0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0, 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8, 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4, 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec,0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc, 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2, 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea,0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa, 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6, 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee,0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe, 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1,0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1, 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9, 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5, 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed,0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd, 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3, 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb,0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb, 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7,0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7, 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef,0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
Table CSStab5 is 256 bytes in length. It is the bit-wise complement of table CSStab4.
We can write out the table explicitly as:
0xff,0x7f,0xbf,0x3f,0xdf,0x5f,0x9f,0x1f,0xef,0x6f,0xaf,0x2f,0xcf,0x4f,0x8f,0x0f, 0xf7,0x77,0xb7,0x37,0xd7,0x57,0x97,0x17,0xe7,0x67,0xa7,0x27,0xc7,0x47,0x87,0x07, 0xfb,0x7b,0xbb,0x3b,0xdb,0x5b,0x9b,0x1b,0xeb,0x6b,0xab,0x2b,0xcb,0x4b,0x8b,0x0b, 0xf3,0x73,0xb3,0x33,0xd3,0x53,0x93,0x13,0xe3,0x63,0xa3,0x23,0xc3,0x43,0x83,0x03, 0xfd,0x7d,0xbd,0x3d,0xdd,0x5d,0x9d,0x1d,0xed,0x6d,0xad,0x2d,0xcd,0x4d,0x8d,0x0d, 0xf5,0x75,0xb5,0x35,0xd5,0x55,0x95,0x15,0xe5,0x65,0xa5,0x25,0xc5,0x45,0x85,0x05, 0xf9,0x79,0xb9,0x39,0xd9,0x59,0x99,0x19,0xe9,0x69,0xa9,0x29,0xc9,0x49,0x89,0x09, 0xf1,0x71,0xb1,0x31,0xd1,0x51,0x91,0x11,0xe1,0x61,0xa1,0x21,0xc1,0x41,0x81,0x01, 0xfe,0x7e,0xbe,0x3e,0xde,0x5e,0x9e,0x1e,0xee,0x6e,0xae,0x2e,0xce,0x4e,0x8e,0x0e, 0xf6,0x76,0xb6,0x36,0xd6,0x56,0x96,0x16,0xe6,0x66,0xa6,0x26,0xc6,0x46,0x86,0x06, 0xfa,0x7a,0xba,0x3a,0xda,0x5a,0x9a,0x1a,0xea,0x6a,0xaa,0x2a,0xca,0x4a,0x8a,0x0a, 0xf2,0x72,0xb2,0x32,0xd2,0x52,0x92,0x12,0xe2,0x62,0xa2,0x22,0xc2,0x42,0x82,0x02, 0xfc,0x7c,0xbc,0x3c,0xdc,0x5c,0x9c,0x1c,0xec,0x6c,0xac,0x2c,0xcc,0x4c,0x8c,0x0c, 0xf4,0x74,0xb4,0x34,0xd4,0x54,0x94,0x14,0xe4,0x64,0xa4,0x24,0xc4,0x44,0x84,0x04, 0xf8,0x78,0xb8,0x38,0xd8,0x58,0x98,0x18,0xe8,0x68,0xa8,0x28,0xc8,0x48,0x88,0x08, 0xf0,0x70,0xb0,0x30,0xd0,0x50,0x90,0x10,0xe0,0x60,0xa0,0x20,0xc0,0x40,0x80,0x00
This concludes the description of the CSS descrambling algorithm.